Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38617358

RESUMO

Surgeries and trauma result in traumatic and iatrogenic nerve damage that can result in a debilitating condition that approximately affects 189 million individuals worldwide. The risk of nerve injury during oncologic surgery is increased due to tumors displacing normal nerve location, blood turbidity, and past surgical procedures, which complicate even an experienced surgeon's ability to precisely locate vital nerves. Unfortunately, there is a glaring absence of contrast agents to assist surgeons in safeguarding vital nerves. To address this unmet clinical need, we leveraged the abundant expression of the voltage-gated sodium channel 1.7 (NaV1.7) as an intraoperative marker to access peripheral nerves in vivo, and visualized nerves for surgical guidance using a fluorescently-tagged version of a potent NaV1.7-targeted peptide, Tsp1a, derived from a Peruvian tarantula. We characterized the expression of NaV1.7 in sensory and motor peripheral nerves across mouse, primate, and human specimens and demonstrated universal expression. We synthesized and characterized a total of 10 fluorescently labeled Tsp1a-peptide conjugates to delineate nerves. We tested the ability of these peptide-conjugates to specifically accumulate in mouse nerves with a high signal-to-noise ratio in vivo. Using the best-performing candidate, Tsp1a-IR800, we performed thyroidectomies in non-human primates and demonstrated successful demarcation of the recurrent laryngeal and vagus nerves, which are commonly subjected to irreversible damage. The ability of Tsp1a to enhance nerve contrast during surgery provides opportunities to minimize nerve damage and revolutionize standards of care across various surgical specialties.

2.
Toxins (Basel) ; 16(1)2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38251271

RESUMO

µ-Conotoxins are small, potent pore-blocker inhibitors of voltage-gated sodium (NaV) channels, which have been identified as pharmacological probes and putative leads for analgesic development. A limiting factor in their therapeutic development has been their promiscuity for different NaV channel subtypes, which can lead to undesirable side-effects. This review will focus on four areas of µ-conotoxin research: (1) mapping the interactions of µ-conotoxins with different NaV channel subtypes, (2) µ-conotoxin structure-activity relationship studies, (3) observed species selectivity of µ-conotoxins and (4) the effects of µ-conotoxin disulfide connectivity on activity. Our aim is to provide a clear overview of the current status of µ-conotoxin research.


Assuntos
Conotoxinas , Canais de Sódio Disparados por Voltagem , Conotoxinas/farmacologia , Dissulfetos , Relação Estrutura-Atividade
3.
Cell Mol Life Sci ; 80(10): 287, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689602

RESUMO

Voltage-gated sodium (NaV) channels are transmembrane proteins that play a critical role in electrical signaling in the nervous system and other excitable tissues. µ-Conotoxins are peptide toxins from the venoms of marine cone snails (genus Conus) that block NaV channels with nanomolar potency. Most species of the subgenera Textilia and Afonsoconus are difficult to acquire; therefore, their venoms have yet to be comprehensively interrogated for µ-conotoxins. The goal of this study was to find new µ-conotoxins from species of the subgenera Textilia and Afonsoconus and investigate their selectivity at human NaV channels. Using RNA-seq of the venom gland of Conus (Textilia) bullatus, we identified 12 µ-conotoxin (or µ-conotoxin-like) sequences. Based on these sequences we designed primers which we used to identify additional µ-conotoxin sequences from DNA extracted from historical specimens of species from Textilia and Afonsoconus. We synthesized six of these µ-conotoxins and tested their activity on human NaV1.1-NaV1.8. Five of the six synthetic peptides were potent blockers of human NaV channels. Of these, two peptides (BuIIIB and BuIIIE) were potent blockers of hNaV1.3. Three of the peptides (BuIIIB, BuIIIE and AdIIIA) had submicromolar activity at hNaV1.7. This study serves as an example of the identification of new peptide toxins from historical DNA and provides new insights into structure-activity relationships of µ-conotoxins with activity at hNaV1.3 and hNaV1.7.


Assuntos
Conotoxinas , Caramujo Conus , Toxinas Biológicas , Humanos , Animais , Conotoxinas/farmacologia , Proteínas de Membrana , Canais de Sódio/genética
4.
ACS Omega ; 8(29): 26276-26286, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521635

RESUMO

Numerous spider venom-derived gating modifier toxins exhibit conformational heterogeneity during purification by reversed-phase high-performance liquid chromatography (RP-HPLC). This conformational exchange is especially peculiar for peptides containing an inhibitor cystine knot motif, which confers excellent structural stability under conditions that are not conducive to disulfide shuffling. This phenomenon is often attributed to proline cis/trans isomerization but has also been observed in peptides that do not contain a proline residue. Pn3a is one such peptide forming two chromatographically distinguishable peaks that readily interconvert following the purification of either conformer. The nature of this exchange was previously uncharacterized due to the fast rate of conversion in solution, making isolation of the conformers impossible. In the present study, an N-terminal modification of Pn3a enabled the isolation of the individual conformers, allowing activity assays to be conducted on the individual conformers using electrophysiology. The conformers were analyzed separately by nuclear magnetic resonance spectroscopy (NMR) to study their structural differences. RP-HPLC and NMR were used to study the mechanism of exchange. The later-eluting conformer was the active conformer with a rigid structure that corresponds to the published structure of Pn3a, while NMR analysis revealed the earlier-eluting conformer to be inactive and disordered. The exchange was found to be pH-dependent, arising in acidic solutions, possibly due to reversible disruption and formation of intramolecular salt bridges. This study reveals the nature of non-proline conformational exchange observed in Pn3a and possibly other disulfide-rich peptides, highlighting that the structure and activity of some disulfide-stabilized peptides can be dramatically susceptible to disruption.

5.
Bioconjug Chem ; 34(6): 1072-1083, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37262436

RESUMO

Disulfide-rich peptide toxins have long been studied for their ability to inhibit voltage-gated sodium channel subtype NaV1.7, a validated target for the treatment of pain. In this study, we sought to combine the pore blocking activity of conotoxins with the gating modifier activity of spider toxins to design new bivalent inhibitors of NaV1.7 with improved potency and selectivity. To do this, we created an array of heterodimeric toxins designed to target human NaV1.7 by ligating a conotoxin to a spider toxin and assessed the potency and selectivity of the resulting bivalent toxins. A series of spider-derived gating modifier toxins (GpTx-1, ProTx-II, gHwTx-IV, JzTx-V, CcoTx-1, and Pn3a) and two pore-blocker µ-conotoxins, SxIIIC and KIIIA, were used for this study. We employed either enzymatic ligation with sortase A for C- to N-terminal ligation or click chemistry for N- to N-terminal ligation. The bivalent peptide resulting from ligation of ProTx-II and SxIIIC (Pro[LPATG6]Sx) was shown to be the best combination as native ProTx-II potency at hNaV1.7 was conserved following ligation. At hNaV1.4, a synergistic effect between the pore blocker and gating modifier toxin moieties was observed, resulting in altered sodium channel subtype selectivity compared to the parent peptides. Further studies including mutant bivalent peptides and mutant hNaV1.7 channels suggested that gating modifier toxins have a greater contribution to the potency of the bivalent peptides than pore blockers. This study delineated potential benefits and drawbacks of designing pharmacological hybrid peptides targeting hNaV1.7.


Assuntos
Peptídeos , Humanos , Peptídeos/farmacologia
6.
Org Lett ; 25(24): 4439-4444, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37306339

RESUMO

Hi1a is a naturally occurring bivalent spider-venom peptide that is being investigated as a promising molecule for limiting ischemic damage in strokes, myocardial infarction, and organ transplantation. However, the challenges associated with the synthesis and production of the peptide in large quantities have slowed the progress in this area; hence, access to synthetic Hi1a is an essential milestone for the development of Hi1a as a pharmacological tool and potential therapeutic.


Assuntos
Canais Iônicos Sensíveis a Ácido , Peptídeos , Ligadura , Peptídeos/química , Venenos de Aranha/metabolismo , Venenos de Aranha/farmacologia , AVC Isquêmico/fisiopatologia , Infarto do Miocárdio/fisiopatologia
7.
Nat Commun ; 14(1): 2977, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221205

RESUMO

Stings of certain ant species (Hymenoptera: Formicidae) can cause intense, long-lasting nociception. Here we show that the major contributors to these symptoms are venom peptides that modulate the activity of voltage-gated sodium (NaV) channels, reducing their voltage threshold for activation and inhibiting channel inactivation. These peptide toxins are likely vertebrate-selective, consistent with a primarily defensive function. They emerged early in the Formicidae lineage and may have been a pivotal factor in the expansion of ants.


Assuntos
Venenos de Formiga , Formigas , Toxinas Biológicas , Animais , Dor , Canais de Sódio , Vertebrados
8.
FEBS J ; 290(14): 3688-3702, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36912793

RESUMO

Venom-derived peptides targeting ion channels involved in pain are regarded as a promising alternative to current, and often ineffective, chronic pain treatments. Many peptide toxins are known to specifically and potently block established therapeutic targets, among which the voltage-gated sodium and calcium channels are major contributors. Here, we report on the discovery and characterization of a novel spider toxin isolated from the crude venom of Pterinochilus murinus that shows inhibitory activity at both hNaV 1.7 and hCaV 3.2 channels, two therapeutic targets implicated in pain pathways. Bioassay-guided HPLC fractionation revealed a 36-amino acid peptide with three disulfide bridges named µ/ω-theraphotoxin-Pmu1a (Pmu1a). Following isolation and characterization, the toxin was chemically synthesized and its biological activity was further assessed using electrophysiology, revealing Pmu1a to be a toxin that potently blocks both hNaV 1.7 and hCaV 3. Nuclear magnetic resonance structure determination of Pmu1a shows an inhibitor cystine knot fold that is the characteristic of many spider peptides. Combined, these data show the potential of Pmu1a as a basis for the design of compounds with dual activity at the therapeutically relevant hCaV 3.2 and hNaV 1.7 voltage-gated channels.


Assuntos
Venenos de Aranha , Aranhas , Animais , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Venenos de Aranha/farmacologia , Venenos de Aranha/química , Venenos de Aranha/metabolismo , Dor , Peptídeos/farmacologia , Espectroscopia de Ressonância Magnética , Aranhas/metabolismo
9.
BMC Biol ; 21(1): 5, 2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36617555

RESUMO

BACKGROUND: Eusociality is widely considered to evolve through kin selection, where the reproductive success of an individual's close relative is favored at the expense of its own. High genetic relatedness is thus considered a prerequisite for eusociality. While ants are textbook examples of eusocial animals, not all ants form colonies of closely related individuals. One such example is the ectatommine ant Rhytidoponera metallica, which predominantly forms queen-less colonies that have such a low intra-colony relatedness that they have been proposed to represent a transient, unstable form of eusociality. However, R. metallica is among the most abundant and widespread ants on the Australian continent. This apparent contradiction provides an example of how inclusive fitness may not by itself explain the maintenance of eusociality and raises the question of what other selective advantages maintain the eusocial lifestyle of this species. RESULTS: We provide a comprehensive portrait of the venom of R. metallica and show that the colony-wide venom consists of an exceptionally high diversity of functionally distinct toxins for an ant. These toxins have evolved under strong positive selection, which is normally expected to reduce genetic variance. Yet, R. metallica exhibits remarkable intra-colony variation, with workers sharing only a relatively small proportion of toxins in their venoms. This variation is not due to the presence of chemical castes, but has a genetic foundation that is at least in part explained by toxin allelic diversity. CONCLUSIONS: Taken together, our results suggest that the toxin diversity contained in R. metallica colonies may be maintained by a form of group selection that selects for colonies that can exploit more resources and defend against a wider range of predators. We propose that increased intra-colony genetic variance resulting from low kinship may itself provide a selective advantage in the form of an expanded pharmacological venom repertoire. These findings provide an example of how group selection on adaptive phenotypes may contribute to maintaining eusociality where a prerequisite for kin selection is diminished.


Assuntos
Formigas , Animais , Formigas/genética , Peçonhas , Austrália , Reprodução , Comportamento Social
10.
Sci Rep ; 12(1): 22168, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550366

RESUMO

Most species of bee are capable of delivering a defensive sting which is often painful. A solitary lifestyle is the ancestral state of bees and most extant species are solitary, but information on bee venoms comes predominantly from studies on eusocial species. In this study we investigated the venom composition of the Australian great carpenter bee, Xylocopa aruana Ritsema, 1876. We show that the venom is relatively simple, composed mainly of one small amphipathic peptide (XYTX1-Xa1a), with lesser amounts of an apamin homologue (XYTX2-Xa2a) and a venom phospholipase-A2 (PLA2). XYTX1-Xa1a is homologous to, and shares a similar mode-of-action to melittin and the bombilitins, the major components of the venoms of the eusocial Apis mellifera (Western honeybee) and Bombus spp. (bumblebee), respectively. XYTX1-Xa1a and melittin directly activate mammalian sensory neurons and cause spontaneous pain behaviours in vivo, effects which are potentiated in the presence of venom PLA2. The apamin-like peptide XYTX2-Xa2a was a relatively weak blocker of small conductance calcium-activated potassium (KCa) channels and, like A. mellifera apamin and mast cell-degranulating peptide, did not contribute to pain behaviours in mice. While the composition and mode-of-action of the venom of X. aruana are similar to that of A. mellifera, the greater potency, on mammalian sensory neurons, of the major pain-causing component in A. mellifera venom may represent an adaptation to the distinct defensive pressures on eusocial Apidae.


Assuntos
Venenos de Abelha , Toxinas Biológicas , Abelhas , Camundongos , Animais , Meliteno , Apamina , Austrália , Venenos de Abelha/química , Fosfolipases A2 , Peptídeos , Dor/induzido quimicamente , Mamíferos
11.
Toxins (Basel) ; 14(9)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36136538

RESUMO

µ-Conotoxins are small, potent, peptide voltage-gated sodium (NaV) channel inhibitors characterised by a conserved cysteine framework. Despite promising in vivo studies indicating analgesic potential of these compounds, selectivity towards the therapeutically relevant subtype NaV1.7 has so far been limited. We recently identified a novel µ-conotoxin, SxIIIC, which potently inhibits human NaV1.7 (hNaV1.7). SxIIIC has high sequence homology with other µ-conotoxins, including SmIIIA and KIIIA, yet shows different NaV channel selectivity for mammalian subtypes. Here, we evaluated and compared the inhibitory potency of µ-conotoxins SxIIIC, SmIIIA and KIIIA at hNaV channels by whole-cell patch-clamp electrophysiology and discovered that these three closely related µ-conotoxins display unique selectivity profiles with significant variations in inhibitory potency at hNaV1.7. Analysis of other µ-conotoxins at hNaV1.7 shows that only a limited number are capable of inhibition at this subtype and that differences between the number of residues in loop 3 appear to influence the ability of µ-conotoxins to inhibit hNaV1.7. Through mutagenesis studies, we confirmed that charged residues in this region also affect the selectivity for hNaV1.4. Comparison of µ-conotoxin NMR solution structures identified differences that may contribute to the variance in hNaV1.7 inhibition and validated the role of the loop 1 extension in SxIIIC for improving potency at hNaV1.7, when compared to KIIIA. This work could assist in designing µ-conotoxin derivatives specific for hNaV1.7.


Assuntos
Conotoxinas , Bloqueadores do Canal de Sódio Disparado por Voltagem , Analgésicos/química , Analgésicos/farmacologia , Animais , Conotoxinas/química , Conotoxinas/farmacologia , Cisteína , Humanos , Canal de Sódio Disparado por Voltagem NAV1.4 , Canal de Sódio Disparado por Voltagem NAV1.7 , Peptídeos , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
12.
Front Immunol ; 13: 915368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720375

RESUMO

The search for efficient antimicrobial therapies that can alleviate suffering caused by infections from resistant bacteria is more urgent than ever before. Infections caused by multi-resistant pathogens represent a significant and increasing burden to healthcare and society and researcher are investigating new classes of bioactive compounds to slow down this development. Antimicrobial peptides from the innate immune system represent one promising class that offers a potential solution to the antibiotic resistance problem due to their mode of action on the microbial membranes. However, challenges associated with pharmacokinetics, bioavailability and off-target toxicity are slowing down the advancement and use of innate defensive peptides. Improving the therapeutic properties of these peptides is a strategy for reducing the clinical limitations and synthetic mimics of antimicrobial peptides are emerging as a promising class of molecules for a variety of antimicrobial applications. These compounds can be made significantly shorter while maintaining, or even improving antimicrobial properties, and several downsized synthetic mimics are now in clinical development for a range of infectious diseases. A variety of strategies can be employed to prepare these small compounds and this review describes the different compounds developed to date by adhering to a minimum pharmacophore based on an amphiphilic balance between cationic charge and hydrophobicity. These compounds can be made as small as dipeptides, circumventing the need for large compounds with elaborate three-dimensional structures to generate simplified and potent antimicrobial mimics for a range of medical applications. This review highlight key and recent development in the field of small antimicrobial peptide mimics as a promising class of antimicrobials, illustrating just how small you can go.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Antimicrobianos , Bactérias
13.
J Biol Chem ; 298(3): 101728, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35167877

RESUMO

µ-Conotoxins are components of cone snail venom, well-known for their analgesic activity through potent inhibition of voltage-gated sodium channel (NaV) subtypes, including NaV1.7. These small, disulfide-rich peptides are typically stabilized by three disulfide bonds arranged in a 'native' CysI-CysIV, CysII-CysV, CysIII-CysVI pattern of disulfide connectivity. However, µ-conotoxin KIIIA, the smallest and most studied µ-conotoxin with inhibitory activity at NaV1.7, forms two distinct disulfide bond isomers during thermodynamic oxidative folding, including Isomer 1 (CysI-CysV, CysII-CysIV, CysIII-CysVI) and Isomer 2 (CysI-CysVI, CysII-CysIV, CysIII-CysV), but not the native µ-conotoxin arrangement. To date, there has been no study on the structure and activity of KIIIA comprising the native µ-conotoxin disulfide bond arrangement. Here, we evaluated the synthesis, potency, sodium channel subtype selectivity, and 3D structure of the three isomers of KIIIA. Using a regioselective disulfide bond-forming strategy, we synthetically produced the three µ-conotoxin KIIIA isomers displaying distinct bioactivity and NaV subtype selectivity across human NaV channel subtypes 1.2, 1.4, and 1.7. We show that Isomer 1 inhibits NaV subtypes with a rank order of potency of NaV1.4 > 1.2 > 1.7 and Isomer 2 in the order of NaV1.4≈1.2 > 1.7, while the native isomer inhibited NaV1.4 > 1.7≈1.2. The three KIIIA isomers were further evaluated by NMR solution structure analysis and molecular docking with hNaV1.2. Our study highlights the importance of investigating alternate disulfide isomers, as disulfide connectivity affects not only the overall structure of the peptides but also the potency and subtype selectivity of µ-conotoxins targeting therapeutically relevant NaV subtypes.


Assuntos
Conotoxinas , Bloqueadores do Canal de Sódio Disparado por Voltagem , Canais de Sódio Disparados por Voltagem , Conotoxinas/química , Conotoxinas/farmacologia , Dissulfetos/química , Dissulfetos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo
14.
Bioconjug Chem ; 32(11): 2407-2419, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34751572

RESUMO

Double-knotted peptides identified in venoms and synthetic bivalent peptide constructs targeting ion channels are emerging tools for the study of ion channel pharmacology and physiology. These highly complex and disulfide-rich peptides contain two individual cystine knots, each comprising six cysteines and three disulfide bonds. Until now, native double-knotted peptides, such as Hi1a and DkTx, have only been isolated from venom or produced recombinantly, whereas engineered double-knotted peptides have successfully been produced through enzymatic ligation using sortase A to form a seamless amide bond at the ligation site between two knotted toxins, and by alkyne/azide click chemistry, joining two peptide knots via a triazole linkage. To further pursue these double-knotted peptides as pharmacological tools or probes for therapeutically relevant ion channels, we sought to identify a robust methodology resulting in a high yield product that lends itself to rapid production and facile mutational studies. In this study, we evaluated the ligation efficiency of enzymatic (sortase A5°, butelase 1, wild-type OaAEP 1, C247A-OaAEP 1, and peptiligase) and mild chemical approaches (α-ketoacid-hydroxylamine, KAHA) for forming a native amide bond linking the toxins while maintaining the native disulfide connectivity of each pre-folded peptide. We used two NaV1.7 inhibitors: PaurTx3, a spider-derived gating modifier peptide, and KIIIA, a small cone snail-derived pore blocker peptide, which have previously been shown to increase affinity and inhibitory potency on hNaV1.7 when ligated together. Correctly folded peptides were successfully ligated in varying yields, without disulfide bond shuffling or reduction, with sortase A5° being the most efficient, resulting in 60% ligation conversion within 15 min. In addition, electrophysiology studies demonstrated that for these two peptides, the amino acid composition of the linker did not affect the activity of the double-knotted peptides. This study demonstrates the powerful application of enzymes in efficiently ligating complex disulfide-rich peptides, paving the way for facile production of double-knotted peptides.


Assuntos
Dissulfetos
15.
ACS Pharmacol Transl Sci ; 4(4): 1362-1378, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34423271

RESUMO

The human nociceptor-specific voltage-gated sodium channel 1.7 (hNaV1.7) is critical for sensing various types of somatic pain, but it appears not to play a primary role in acute visceral pain. However, its role in chronic visceral pain remains to be determined. We used assay-guided fractionation to isolate a novel hNaV1.7 inhibitor, Tsp1a, from tarantula venom. Tsp1a is 28-residue peptide that potently inhibits hNaV1.7 (IC50 = 10 nM), with greater than 100-fold selectivity over hNaV1.3-hNaV1.6, 45-fold selectivity over hNaV1.1, and 24-fold selectivity over hNaV1.2. Tsp1a is a gating modifier that inhibits NaV1.7 by inducing a hyperpolarizing shift in the voltage-dependence of channel inactivation and slowing recovery from fast inactivation. NMR studies revealed that Tsp1a adopts a classical knottin fold, and like many knottin peptides, it is exceptionally stable in human serum. Remarkably, intracolonic administration of Tsp1a completely reversed chronic visceral hypersensitivity in a mouse model of irritable bowel syndrome. The ability of Tsp1a to reduce visceral hypersensitivity in a model of irritable bowel syndrome suggests that pharmacological inhibition of hNaV1.7 at peripheral sensory nerve endings might be a viable approach for eliciting analgesia in patients suffering from chronic visceral pain.

16.
ACS Pharmacol Transl Sci ; 4(4): 1379-1389, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34423272

RESUMO

T-type calcium (CaV3) channels play a crucial role in the generation and propagation of action potentials in excitable cells and are considered potential drug targets for the treatment of neurological and cardiovascular diseases. Given the limited pharmacological repertoire for these channels, there is a great need for novel potent and selective CaV3 channel inhibitors. In this study, we used Xenopus oocytes to heterologously express CaV3.1 channels and characterized the interaction with a small cyclic peptide, PnCS1. Using molecular modeling, PnCS1 was docked into the cryo-electron microscopy structure of the human CaV3.1 channel and molecular dynamics were performed on the resultant complex. The binding site of the peptide was mapped with the involvement of critical amino acids located in the pore region and fenestrations of the channel. More specifically, we found that PnCS1 reclines in the central cavity of the pore domain of the CaV3.1 channel and resides stably between the selectivity filter and the intracellular gate, blocking the conduction pathway of the channel. Using Multiple Attribute Positional Scanning approaches, we developed a series of PnCS1 analogues. These analogues had a reduced level of inhibition, confirming the importance of specific residues and corroborating our modeling. In summary, functional studies of PnCS1 on the CaV3.1 channel combined with molecular dynamics results provide the basis for understanding the molecular interactions of PnCS1 with CaV3.1 and are fundamental to structure-based drug discovery for treating CaV3 channelopathies.

17.
Methods Mol Biol ; 2355: 83-92, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386952

RESUMO

Sortase A is a thiol transpeptidase expressed by Gram-positive bacteria. This enzyme is capable of site-specifically ligating peptides containing the C-terminal recognition motif LPXTG to peptides containing an N-terminal polyglycine sequence, forming a native peptide bond. Here, we describe the preparation and application of sortase A to the ligation of two individually folded disulfide-rich animal venom peptides in order to form a heterodimeric double-knotted peptide with a native peptide linker. This method is mild enough to preserve the structures and disulfide connectivities of the peptides during ligation. We employed a highly efficient sortase A pentamutant (SrtA5°), which brings the reaction to completion within 15 min with a ~50-80% yield of ligated peptide.


Assuntos
Peçonhas , Aminoaciltransferases , Animais , Proteínas de Bactérias , Cisteína Endopeptidases , Dissulfetos , Peptídeos
18.
Biochem Pharmacol ; 192: 114693, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34302796

RESUMO

In the face of increasing drug resistance, the development of new anthelmintics is critical for controlling nematodes that parasitise livestock. Although hymenopteran venom toxins have attracted attention for applications in agriculture and medicine, few studies have explored their potential as anthelmintics. Here we assessed hymenopteran venoms as a possible source of new anthelmintic compounds by screening a panel of ten hymenopteran venoms against Haemonchus contortus, a major pathogenic nematode of ruminants. Using bioassay-guided fractionation coupled with liquid chromatography-tandem mass spectrometry, we identified four novel anthelmintic peptides (ponericins) from the venom of the neotropical ant Neoponera commutata and the previously described ponericin M-PONTX-Na1b from Neoponera apicalis venom. These peptides inhibit H. contortus development with IC50 values of 2.8-5.6 µM. Circular dichroism spectropolarimetry indicated that the ponericins are unstructured in aqueous solution but adopt α-helical conformations in lipid mimetic environments. We show that the ponericins induce non-specific membrane perturbation, which confers broad-spectrum antimicrobial, insecticidal, cytotoxic, hemolytic, and algogenic activities, with activity across all assays typically correlated. We also show for the first time that ponericins induce spontaneous pain behaviour when injected in mice. We propose that the broad-spectrum activity of the ponericins enables them to play both a predatory and defensive role in neoponeran ants, consistent with their high abundance in venom. This study reveals a broader functionality for ponericins than previously assumed, and highlights both the opportunities and challenges in pursuing ant venom peptides as potential therapeutics.


Assuntos
Venenos de Formiga/farmacologia , Anti-Helmínticos/farmacologia , Anti-Infecciosos/farmacologia , Hemolíticos/farmacologia , Inseticidas/farmacologia , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Venenos de Formiga/genética , Venenos de Formiga/isolamento & purificação , Anti-Helmínticos/isolamento & purificação , Anti-Infecciosos/isolamento & purificação , Formigas , Brugia Malayi/efeitos dos fármacos , Brugia Malayi/fisiologia , Calliphoridae , Relação Dose-Resposta a Droga , Células HEK293 , Haemonchus/efeitos dos fármacos , Haemonchus/fisiologia , Hemolíticos/isolamento & purificação , Humanos , Inseticidas/isolamento & purificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/genética , Peptídeos/isolamento & purificação , Ovinos
19.
J Med Chem ; 64(14): 9906-9915, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34197114

RESUMO

We have designed a new class of highly potent bivalent melanocortin receptor ligands based on the nature-derived bicyclic peptide sunflower trypsin inhibitor 1 (SFTI-1). Incorporation of melanotropin pharmacophores in each of the two turn regions of SFTI-1 resulted in substantial gains in agonist activity particularly at human melanocortin receptors 1 and 3 (hMC1R/hMC3R) compared to monovalent analogues. In in vitro binding and functional assays, the most potent molecule, compound 6, displayed low picomolar agonist activity at hMC1R (pEC50 > 10.3; EC50 < 50 pM; pKi: 10.16 ± 0.04; Ki: 69 ± 5 pM) and is at least 30-fold more selective for this receptor than for hMC3R, hMC4R, or hMC5R. The results are discussed in the context of structural homology models of hMCRs in complex with the developed bivalent ligands.


Assuntos
Peptídeos Cíclicos/farmacologia , Receptor Tipo 1 de Melanocortina/agonistas , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Relação Estrutura-Atividade
20.
J Med Chem ; 64(13): 9484-9495, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34142550

RESUMO

TFF3 regulates essential gastro- and neuroprotective functions, but its molecular mode of action remains poorly understood. Synthetic intractability and lack of reliable bioassays and validated receptors are bottlenecks for mechanistic and structure-activity relationship studies. Here, we report the chemical synthesis of TFF3 and its homodimer via native chemical ligation followed by oxidative folding. Correct folding was confirmed by NMR and circular dichroism, and TFF3 and its homodimer were not cytotoxic or hemolytic. TFF3, its homodimer, and the trefoil domain (TFF310-50) were susceptible to gastrointestinal degradation, revealing a gut-stable metabolite (TFF37-54; t1/2 > 24 h) that retained its trefoil structure and antiapoptotic bioactivity. We tried to validate the putative TFF3 receptors CXCR4 and LINGO2, but neither TFF3 nor its homodimer displayed any activity up to 10 µM. The discovery of a gut-stable bioactive metabolite and reliable synthetic accessibility to TFF3 and its analogues are cornerstones for future molecular probe development and structure-activity relationship studies.


Assuntos
Fator Trefoil-3/síntese química , Fator Trefoil-3/metabolismo , Fenômenos Biofísicos , Células HEK293 , Humanos , Estrutura Molecular , Oxirredução , Dobramento de Proteína , Relação Estrutura-Atividade , Fator Trefoil-3/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...